Fall | Undergraduate/Grad | 12 Units | Prereq: 2.003 and 2.007
Design, modeling and integration of compliance into systems that enable performance which is impractical to obtain via rigid mechanisms. Includes multiple strategies (pseudo-rigid body, topology synthesis, freedom and constraint topology) to engineer compliant mechanisms for mechanical systems. Emphasis is placed upon the integration of first principles (math/physics/engineering classes) to optimize kinematics, stiffness, energy storage/release, load capacity, efficiency and integration with actuation/sensing. Synthesize concepts, optimize them via computational models and test prototypes. Prototypes integrate multiple engineering sub-disciplines (e.g. mechanics + dynamics or mechanics + energy) and are drawn from biological systems, prosthetics, energy harvesting, precision instrumentation, robotics, space-based systems and others. Students taking graduate version complete additional assignments.